MySQL,也会经常用索引,但是对索引的原理和高级功能却并不知道,我们在这里一起学习下。InnoDB存储索引
在数据库中,如果索引太多,应用程序的性能可能会受到影响;如果索引太少,又会对查询性能产生影响。所以,我们要追求两者的一个平衡点,足够多的索引带来查询性能提高,又不因为索引过多导致修改数据等操作时负载过高。
InnoDB支持3种常见索引:
● 哈希索引
● B+ 树索引
● 全文索引
我们接下来要详细讲解的就是B+ 树索引和全文索引。
哈希索引
学习哈希索引之前,我们先了解一些基础的知识:哈希算法。哈希算法是一种常用的算法,时间复杂度为O(1)。它不仅应用在索引上,各个数据库应用中也都会使用。
哈希表
哈希表(Hash Table)也称散列表,由直接寻址表改进而来。
在该表中U表示关键字全集,K表示实际存在的关键字,右边的数组(哈希表)表示在内存中可以直接寻址的连续空间,哈希表中每个插槽关联的单向链表中存储实际数据的真实地址。
如果右边的数组直接使用直接寻址表,那么对于每一个关键字K都会存在一个h[K]且不重复,这样存在一些问题,如果U数据量过大,那么对于计算机的可用容量来说有点不实际。而如果集合K占比U的比例过小,则分配的大部分空间都要浪费。
因此我们使用哈希表,我们通过一些函数h(k)来确定映射关系,这样让离散的数据尽可能均匀分布的利用数组中的插槽,但会有一个问题,多个关键字映射到同一个插槽中,这种情况称为碰撞(collision),数据库中采用最简单的解决方案:链接法(chaining)。也就是每个插槽存储一个单项链表,所有碰撞的元素会依次形成链表中的一个结点,如果不存在,则链表指向为NULL。
而使用的函数h(k)成为哈希函数,它必须能够很好的进行散列。最好能够避免碰撞或者达到最小碰撞。一般为了更好的处理哈希的关键字,我们会将其转换为自然数,然后通过除法散列、乘法散列或者全域散列来实现。数据库一般使用除法散列,即当有m个插槽时,我们对每个关键字k进行对m的取模:h(k) = k % m。
InnoDB存储引擎中的哈希算法
InnoDB存储引擎使用哈希算法来查找字典,冲突机制采用链表,哈希函数采用除法散列。对于缓冲池的哈希表,在缓存池中的每页都有一个chain指针,指向相同哈希值的页。对于除法散列,m的值为略大于2倍缓冲池页数量的质数。如当前innodb_buffer_pool_size大小为10M,则共有0个16KB的页,需要分配1280个插槽,而略大于的质数为1399,因此会分配1399个槽的哈希表,用来哈希查询缓冲池中的页。
而对于将每个页转换为自然数,每个表空间都有一个space_id,用户要查询的是空间中某个连续的16KB的页,即偏移量(offset),InnoDB将space_id左移20位,再加上space_id和offset,即K=space_id<<20+space_id+offset,然后使用除法散列到各个槽中。
自适应哈希索引
自适应哈希索引采用上面的哈希表实现,属于数据库内部机制,DBA不能干预。它只对字典类型的查找非常快速,而对范围查找等却为力,如:
select * from t where f='100';
我们可以查看自适应哈希索引的使用情况:
mysql> show engine innodb status\G; *************************** 1. row *************************** Type: InnoDB Name: Status: ===================================== 2019-05-13 23:32:21 7f4875947700 INNODB MONITOR OUTPUT ===================================== Per second averages calculated from the last 32 seconds ... ------------------------------------- INSERT BUFFER AND ADAPTIVE HASH INDEX ------------------------------------- Ibuf: size 1, free list len 1226, seg size 1228, 0 merges merged operations: insert 0, delete mark 0, delete 0 discarded operations: insert 0, delete mark 0, delete 0 Hash table size 276671, node heap has 1288 buffer(s) 0.16 hash searches/s, 16.97 non-hash searches/s
我们可以看到自适应哈希的使用情况,可以通过最后一行的hash searches/non-hash searches来判断使用哈希索引的效率。
我们可以使用innodb_adaptive_hash_index参数来禁用或启用此特性,默认开启。
B+ 树索引
B+ 树索引是目前关系型数据库系统中查找最为常用和有效的索引,其构造类似于二叉树,根据键值对快速找到数据。B+ 树(balance+ tree)由B树(banlance tree 平衡二叉树)和索引顺序访问方法(ISAM: Index Sequence Access Method)演化而来,这几个都是经典的数据结构。而MyISAM引擎最初也是参考ISAM数据结构设计的。
基础数据结构
想要了解B+ 树数据结构,我们先了解一些基础的知识。
二分查找法
又称为折半查找法,指的是将数据顺序排列,通过每次和中间值比较,跳跃式查找,每次缩减一半的范围,快速找到目标的算法。其算法复杂度为log2(n),比顺序查找要快上一些。
如图所示,从有序列表中查找48,只需要3步:
详细的算法可以参考二分查找算法。
二叉查找树
二叉查找树的定义是在一个二叉树中,左子树的值总是小于根键值,根键值总是小于右子树的值。在我们查找时,每次都从根开始查找,根据比较的结果来判断继续查找左子树还是右子树。其查找的方法非常类似于二分查找法。
平衡二叉树
二叉查找树的定义非常宽泛,可以任意构造,但是在极端情况下查询的效率和顺序查找一样,如只有左子树的二叉查找树。
若想构造一个性能最大的二叉查找树,就需要该树是平衡的,即平衡二叉树(由于其发明者为G. M. Adelson-Velsky 和 Evgenii Landis,又被称为AVL树)。其定义为必须满足任何节点的两个子树的高度最大差为1的二叉查找树。平衡二叉树相对结构较优,而最好的性能需要建立一个最优二叉树,但由于维护该树代价高,因此一般平衡二叉树即可。
平衡二叉树查询速度很快,但在树发生变更时,需要通过一次或多次左旋和右旋来达到树新的平衡。这里不发散讲。
B+ 树
了解了基础的数据结构后,我们来看下B+ 树的实现,其定义十分复杂,简单来说就是在B树上增加规定:
1、叶子结点存数据,非叶子结点存指针
2、所有叶子结点从左到右用双向链表记录
目标是为磁盘或其他直接存取辅助设备设计的一种平衡查找树。在该树中,所有的记录都按键值的大小放在同一层的叶子节点上,各叶子节点之间有指针进行连接(非连续存储),形成一个双向链表。索引节点按照平衡树的方式构造,并存在指针指向具体的叶子节点,进行快速查找。
下面的B+ 树为数据较少时,此时高度为2,每页固定存放4条记录,扇出固定为5(图上灰色部分)。叶子节点存放多条数据,是为了降低树的高度,进行快速查找。
当我们插入28、70、95 3条数据后,B+ 树由于数据满了,需要进行页的拆分。此时高度变为3,每页依然是4条记录,双向链表未画出但是依然是存在的,现在可以看出来是一个平衡二叉树的雏形了。
InnoDB的B+ 树索引
InnoDB的B+ 树索引的特点是高扇出性,因此一般树的高度为2~4层,这样我们在查找一条记录时只用I/O 2~4次。当前机械硬盘每秒至少100次I/O/s,因此查询时间只需0.02~0.04s。
数据库中的B+ 树索引分为聚集索引(clustered index)和辅助索引(secondary index)。它们的区别是叶子节点存放的是否为一整行的完整数据。
聚集索引
聚集索引就是按照每张表的主键(唯一)构造一棵B+ 树,同时叶子节点存放整行的完整数据,因此将叶子节点称为数据页。由于定义了数据的逻辑顺序,聚集索引也能快速的进行范围类型的查询。
聚集索引的叶子节点按照逻辑顺序连续存储,叶子节点内部物理上连续存储,作为最小单元,叶子节点间通过双向指针连接,物理存储上不连续,逻辑存储上连续。
聚集索引能够针对主键进行快速的排序查找和范围查找,由于是双向链表,因此在逆序查找时也非常快。
我们可以通过explain命令来分析MySQL数据库的执行计划:
# 查看表的定义,可以看到id为主键,name为普通列 mysql> show create table dimensionsConf; | Table | Create Table | dimensionsConf | CREATE TABLE `dimensionsConf` ( `id` int(11) NOT NULL AUTO_INCREMENT, `name` varchar(20) DEFAULT NULL, `remark` varchar(1024) NOT NULL, PRIMARY KEY (`id`), FULLTEXT KEY `fullindex_remark` (`remark`) ) ENGINE=InnoDB AUTO_INCREMENT=178 DEFAULT CHARSET=utf8 | 1 row in set (0.00 sec) # 先测试一个非主键的name属性排序并查找,可以看到没有使用到任何索引,且需要filesort(文件排序),这里的rows为输出行数的预估值 mysql> explain select * from dimensionsConf order by name limit 10\G; *************************** 1. row *************************** id: 1 select_type: SIMPLE table: dimensionsConf type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 57 Extra: Using filesort 1 row in set (0.00 sec) # 再测试主键id的排序并查找,此时使用主键索引,在执行计划中没有了filesort操作,这就是聚集索引带来的优化 mysql> explain select * from dimensionsConf order by id limit 10\G; *************************** 1. row *************************** id: 1 select_type: SIMPLE table: dimensionsConf type: index possible_keys: NULL key: PRIMARY key_len: 4 ref: NULL rows: 10 Extra: NULL 1 row in set (0.00 sec) # 再查找根据主键id的范围查找,此时直接根据叶子节点的上层节点就可以快速得到范围,然后读取数据 mysql> explain select * from dimensionsConf where id>10 and id<10000\G; *************************** 1. row *************************** id: 1 select_type: SIMPLE table: dimensionsConf type: range possible_keys: PRIMARY key: PRIMARY key_len: 4 ref: NULL rows: 56 Extra: Using where 1 row in set (0.00 sec)
辅助索引
辅助索引又称非聚集索引,其叶子节点不包含行记录的全部数据,而是包含一个书签(bookmark),该书签指向对应行数据的聚集索引,告诉InnoDB存储引擎去哪里查找具体的行数据。辅助索引与聚集索引的关系就是结构相似、存在,但辅助索引查找非索引数据需要依赖于聚集索引来查找。
全文索引
我们通过B+ 树索引可以进行前缀查找,如:
select * from blog where content like 'xxx%';
只要为content列添加了B+ 树索引(聚集索引或辅助索引),就可快速查询。但在更多情况下,我们在博客或搜索引擎中需要查询的是某个单词,而不是某个单词开头,如:
select * from blog where content like '%xxx%';
此时如果使用B+ 树索引依然是全表扫描,而全文检索(Full-Text Search)就是将整本书或文章内任意内容检索出来的技术。
倒排索引
全文索引通常使用倒排索引(inverted index)来实现,倒排索引和B+ 树索引都是一种索引结构,它需要将分词(word)存储在一个辅助表(Auxiliary Table)中,为了提高全文检索的并行性能,共有6张辅助表。辅助表中存储了单词和单词在各行记录中位置的映射关系。它分为两种:
inverted file index(倒排文件索引),表现为{单词,单词所在文档ID}full inverted index(详细倒排索引),表现为{单词,(单词所在文档ID, 文档中的位置)}对于这样的一个数据表:
倒排文件索引类型的辅助表存储为:
详细倒排索引类型的辅助表存储为,占用更多空间,也更好的定位数据,比提供更多的搜索特性:
全文检索索引缓存
辅助表是存在与磁盘上的持久化的表,由于磁盘I/O比较慢,因此提供FTS Index Cache(全文检索索引缓存)来提高性能。FTS Index Cache是一个红黑树结构,根据(word, list)排序,在有数据插入时,索引先更新到缓存中,而后InnoDB存储引擎会批量进行更新到辅助表中。
当数据库宕机时,尚未落盘的索引缓存数据会自动读取并存储,配置参数innodb_ft_cache_size控制缓存的大小,默认为32M,提高该值,可以提高全文检索的性能,但在故障时,需要更久的时间恢复。
在删除数据时,InnoDB不会删除索引数据,而是保存在DELETED辅助表中,因此一段时间后,索引会变得非常大,可以通过optimize table命令手动删除无效索引记录。如果需要删除的内容非常多,会影响应用程序的可用性,参数innodb_ft_num_word_optimize控制每次删除的分词数量,默认为2000,用户可以调整该参数来控制删除幅度。
全文检索
全文检索存在一个黑名单列表(stopword list),该列表中的词不需要进行索引分词,默认共有36个,如the单词。你可以自行调整:
mysql> select * from information_schema.INNODB_FT_DEFAULT_STOPWORD; +-------+ | value | +-------+ | a | | about | | an | | are | | as | | at | | be | | by | | com | | de | | en | | for | | from | | how | | i | | in | | is | | it | | la | | of | | on | | or | | that | | the | | this | | to | | was | | what | | when | | where | | who | | will | | with | | und | | the | | www | +-------+ 36 rows in set (0.00 sec)
其他还有:
● 每张表只能有一个全文检索索引
● 多列组合的全文检索索引必须使用相同的字符集和字符序,不了解的可以参考MySQL乱码的原因和设置UTF8数据格式
● 不支持没有单词界定符(delimiter)的语言,如中文、日语、韩语等
全文检索
我们创建一个全文索引:
mysql> create fulltext index fullindex_remark on dimensionsConf(remark); Query OK, 0 rows affected, 1 warning (0.39 sec) Records: 0 Duplicates: 0 Warnings: 1 mysql> show warnings; +---------+------+--------------------------------------------------+ | Level | Code | Message | +---------+------+--------------------------------------------------+ | Warning | 124 | InnoDB rebuilding table to add column FTS_DOC_ID | +---------+------+--------------------------------------------------+ 1 row in set (0.00 sec)
全文检索有两种方法:
● 自然语言(Natural Language),默认方法,可省略:(IN NATURAL LANGUAE MODE)
● 布尔模式(Boolean Mode):(IN BOOLEAN MODE)
自然语言还支持一种扩展模式,后面加上:(WITH QUERY EXPANSION)。
其语法为MATCH()...AGAINST(),MATCH指定被查询的列,AGAINST指定何种方法查询。
自然语言检索
mysql> select remark from dimensionsConf where remark like '%baby%';
+-------------------+
| remark |
+-------------------+
| a baby like panda |
| a baby like panda |
+-------------------+
2 rows in set (0.00 sec)
mysql> select remark from dimensionsConf where match(remark) against('baby' IN NATURAL LANGUAGE MODE);
+-------------------+
| remark |
+-------------------+
| a baby like panda |
| a baby like panda |
+-------------------+
2 rows in set (0.00 sec)
# 查看下执行计划,使用了全文索引排序
mysql> explain select * from dimensionsConf where match(remark) against('baby');
+----+-------------+----------------+----------+------------------+------------------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------------+----------+------------------+------------------+---------+------+------+-------------+
| 1 | SIMPLE | dimensionsConf | fulltext | fullindex_remark | fullindex_remark | 0 | NULL | 1 | Using where |
+----+-------------+----------------+----------+------------------+------------------+---------+------+------+-------------+
1 row in set (0.00 sec)我们也可以查看各行数据的相关性,是一个非负的浮点数,0代表没有相关性:
mysql> select id,remark,match(remark) against('baby') as relevance from dimensionsConf;
+-----+-----------------------+--------------------+
| id | remark | relevance |
+-----+-----------------------+--------------------+
| 106 | c | 0 |
| 111 | 运营商 | 0 |
| 115 | a baby like panda | 2.1165735721588135 |
| 116 | a baby like panda | 2.1165735721588135 |
+-----+-----------------------+--------------------+
4 rows in set (0.01 sec)布尔模式检索
MySQL也允许用修饰符来进行全文检索,其中特殊字符会有特殊含义:
+: 该word必须存在-: 该word必须排除(no operator): 该word可选,如果出现,相关性更高@distance: 查询的多个单词必须在指定范围之内>: 出现该单词时增加相关性<: 出现该单词时降低相关性~: 出现该单词时相关性为负*: 以该单词开头的单词": 表示短语# 代表必须有a baby短语,不能有man,可以有lik开头的单词,可以有panda,
select remark from dimensionsConf where match(remark) against('+"a baby" -man lik* panda' IN BOOLEAN MODE);扩展查询
当查询的关键字太短或不够清晰时,需要用隐含知识来进行检索,如database关联的MySQL/DB2等。但这个我并没太明白怎么使用,后续补充吧。
类似的使用是:
select * from articles where match(title,body) against('database' with query expansion);推荐学习:MySQL教程
瑞缇养生网还为您提供以下相关内容希望对您有帮助:
深入解析mysql中的索引(原理详解)
InnoDB:表数据按主键构建的B+树存储,叶子节点直接包含完整数据行。若未显式定义主键,InnoDB会选择唯一非空列或生成隐藏的6字节ROWID作为索引。MyISAM:不支持聚簇索引,索引文件(.MYI)与数据文件(.MYD)分离,查询需先定位索引再读取数据,效率低于InnoDB。二级索引(Secondary Index
详解MySQL索引的底层实现原理
其原理是对文本进行分词处理,生成单词列表(倒排索引),并为每个单词记录包含该词的数据行位置。例如,查询“数据库”时,系统会快速定位到所有包含该词的行。全文索引的构建成本高,需消耗大量时间和存储空间,且仅适用于大文本场景,常规数值或短字符串查询无需使用。总结MySQL索引的底层设计均围绕“减...
干货篇:一篇文章让你——《深入解析MySQL索引原理 》
读取数据顺序:.myi -> .myd。索引分为主键索引和非主键索引。(一)主键索引:叶子节点key存储索引值,value存储data数据指针。(二)辅助索引:结构与主键索引基本一致。(三)InnoDB聚簇索引:数据和索引在同一份文件中。主键索引和非主键索引有区别。(四)主键索引:叶子节点key存储索引信息,value存...
Mysql 索引简介
三、MySQL InnoDB的索引实现1. 索引组织表(IOT)InnoDB中,表数据按主键顺序存储在聚簇索引(B+树)的叶子节点中,表即索引。若未定义主键,InnoDB会隐式生成一个6字节的ROWID作为聚簇索引。2. B+树索引结构非叶子节点:存储键值和子节点指针,用于快速定位。叶子节点:存储数据记录(聚簇索引)或主...
万字总结:学习MySQL优化原理,这一篇就够了!
三、存储引擎优化原理InnoDB核心特性 事务支持:ACID兼容,通过redo log(持久性)和undo log(原子性)实现。行级锁:减少锁冲突,但需注意间隙锁(Gap Lock)导致的死锁风险。MVCC机制:通过ReadView实现读写不阻塞,提升并发性能。缓冲池(Buffer Pool):缓存数据页和索引页,大小建议设为物理内存的50...
为什么有关MongoDB采用B树索引,以及Mysql B+树做索引
4.1 innodb的索引机制 先以innodb存储引擎为例,说明innodb引擎是如何利用B+树建立索引的 首先创建一张表:zodiac,并插入一些数据 对于innodb来说,只有一个数据文件,这个数据文件本身就是用B+树形式组织,B+树每个节点的关键字就是表的主键,因此innode的数据文件本身就是主索引文件,如下图所示,主...
跳槽必看MySQL索引:B+树原理揭秘与索引优缺点分析
B+树原理揭秘: 数据结构:B+树是一种平衡树数据结构,所有叶子节点都在同一层,且叶子节点之间通过指针相连,形成一个有序链表。这种结构使得B+树在进行范围查询时非常高效。 InnoDB索引结构:在MySQL的InnoDB存储引擎中,B+树被用作索引结构。叶子节点按主键排序,每个叶子节点存储了一条记录的主键和...
mysql数据库索引怎么用
一、索引的核心原理数据结构基础:索引本质是按特定列排序的数据库表副本,通过逻辑分块存储数据指针(如B+树结构)。查询加速机制:执行查询时,MySQL优先扫描索引结构定位数据块指针,避免全表扫描(如无索引时需逐行检查)。二、索引类型与适用场景B树索引(默认类型)适用场景:等值查询(=)、范围查询...
图解MySQL 索引:B-树、B+树
根据数据中物理顺序与键值的逻辑(索引)顺序关系:聚集索引:并不是一种单独的索引类型,而是一种数据存储方式。InnoDB的聚簇索引是在同一个结构中保存了B+Tree索引和数据行。非聚集索引:不是聚簇索引的索引。二、索引的底层实现MySQL默认存储引擎InnoDB只显式支持B-Tree(从技术上来说是B+Tree)索引...
深入理解InnoDB -- 架构篇
双写机制(doublewrite)确保数据完整,即使部分写操作失败也能恢复。恢复与性能优化重做日志恢复时,InnoDB确保页数据的完整性和一致性。通过内存的双写缓冲区与磁盘上的共享表空间,实现了高效的数据恢复流程。此外,InnoDB还会自动创建哈希索引以加速查询速度。系统配置与文件管理MySQL的配置参数丰富多样,如...
Copyright © 2019- rtyq.cn 版权所有
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务